Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Mol Biol Rep ; 50(11): 8817-8825, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37658933

RESUMO

BACKGROUND: Lonicerae japonicae flos, also known as Jinyinhua (JYH), is an important component of traditional Chinese patent medicine (TCPM) products. However, the potential for adulteration and substitution with low-quality materials highlights the need for a reliable and sensitive approach to identify the species composition of TCPM products for consumer safety. METHODS AND RESULTS: We used universal ITS2 primers to amplify TCPMs containing JYH. However, the results were inconclusive, as only one operational taxonomic unit (OTU) was identified as Lonicera sp., which could not be identified at the species level. To confirm the species identification of Lonicera sp. in TCPM, we developed a short mini-barcode primer based on the psbA-trnH region, which, in combination with DNA metabarcoding technology, allowed for qualitative and quantitative analysis of artificially mixed samples. We applied the mini-barcode to distinguish TCPMs containing JYH and demonstrated its relatively accurate quantitative ability in identifying two Lonicera species. CONCLUSIONS: Our study presents a method for qualitative and quantitative identification of JYH, providing a promising application of DNA metabarcoding technology in the quality control of TCPM products.


Assuntos
Medicamentos de Ervas Chinesas , Lonicera , Medicina Tradicional Chinesa , Controle de Qualidade , Lonicera/genética , Cromatografia Líquida de Alta Pressão
2.
J Med Entomol ; 60(5): 931-943, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37467349

RESUMO

Blow flies are of medical, sanitary, veterinary, and forensic importance. Their accurate taxonomic identification is essential for their use in applied research. However, neotropical fauna has not been completely studied or described, and taxa identification without the required training is a difficult task. Additionally, the current morphological keys are not fitting to all extant taxa. Molecular-based approaches are widely used to overcome these issues, including the standard 5' COI barcode fragment (~650 base pairs [bp]) for identification at the species level. Here, a shorter sequence of 5' COI fragment (~342 bp) was assessed for the identification of 28 blow fly species inhabiting the northwest of South America. One tree-based (the generalized mixed Yule-coalescent-GMYC) and 3 distance-based approaches (automatic barcode gap discover - ABGD, the best close match - BCM, and the nearest neighbor - NN) analyses were performed. Noticeably, the amplification and sequencing of samples that had been preserved for up to 57 years were successful. The tree topology assigned 113 sequences to a specific taxon (70% effectiveness), while the distance approach assigned to 95 (59% effectiveness). The short fragment allowed the molecular identification of 19 species (60% of neotropical species except for the Lucilia species and Hemilucilia semidiaphana). According to these findings, the taxonomic and faunistic considerations of the blow fly fauna were provided. Overall, the short fragment approach constitutes an optimal species confirmation tool for the most common blow flies in northwestern South America.


Assuntos
Dípteros , Animais , Dípteros/genética , DNA Mitocondrial , Calliphoridae/genética , Ciências Forenses , Complexo IV da Cadeia de Transporte de Elétrons/genética , América do Sul , Código de Barras de DNA Taxonômico
3.
J Pharm Anal ; 13(5): 431-441, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37305789

RESUMO

DNA barcoding has been widely used for herb identification in recent decades, enabling safety and innovation in the field of herbal medicine. In this article, we summarize recent progress in DNA barcoding for herbal medicine to provide ideas for the further development and application of this technology. Most importantly, the standard DNA barcode has been extended in two ways. First, while conventional DNA barcodes have been widely promoted for their versatility in the identification of fresh or well-preserved samples, super-barcodes based on plastid genomes have rapidly developed and have shown advantages in species identification at low taxonomic levels. Second, mini-barcodes are attractive because they perform better in cases of degraded DNA from herbal materials. In addition, some molecular techniques, such as high-throughput sequencing and isothermal amplification, are combined with DNA barcodes for species identification, which has expanded the applications of herb identification based on DNA barcoding and brought about the post-DNA-barcoding era. Furthermore, standard and high-species coverage DNA barcode reference libraries have been constructed to provide reference sequences for species identification, which increases the accuracy and credibility of species discrimination based on DNA barcodes. In summary, DNA barcoding should play a key role in the quality control of traditional herbal medicine and in the international herb trade.

4.
Acta Pharm Sin B ; 13(4): 1755-1770, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37139429

RESUMO

For wild natural medicine, unanticipated biodiversity as species or varieties with similar morphological characteristics and sympatric distribution may co-exist in a single batch of medical materials, which affects the efficacy and safety of clinical medication. DNA barcoding as an effective species identification tool is limited by its low sample throughput nature. In this study, combining DNA mini-barcode, DNA metabarcoding and species delimitation method, a novel biological sources consistency evaluation strategy was proposed, and high level of interspecific and intraspecific variations were observed and validated among 5376 Amynthas samples from 19 sampling points regarded as "Guang Dilong" and 25 batches of proprietary Chinese medicines. Besides Amynthas aspergillum as the authentic source, 8 other Molecular Operational Taxonomic Units (MOTUs) were elucidated. Significantly, even the subgroups within A. aspergillum revealed here differ significantly on chemical compositions and biological activity. Fortunately, this biodiversity could be controlled when the collection was limited to designated areas, as proved by 2796 "decoction pieces" samples. This batch biological identification method should be introduced as a novel concept regarding natural medicine quality control, and to offer guidelines for in-situ conservation and breeding bases construction of wild natural medicine.

5.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-991156

RESUMO

DNA barcoding has been widely used for herb identification in recent decades,enabling safety and innovation in the field of herbal medicine.In this article,we summarize recent progress in DNA bar-coding for herbal medicine to provide ideas for the further development and application of this tech-nology.Most importantly,the standard DNA barcode has been extended in two ways.First,while conventional DNA barcodes have been widely promoted for their versatility in the identification of fresh or well-preserved samples,super-barcodes based on plastid genomes have rapidly developed and have shown advantages in species identification at low taxonomic levels.Second,mini-barcodes are attractive because they perform better in cases of degraded DNA from herbal materials.In addition,some mo-lecular techniques,such as high-throughput sequencing and isothermal amplification,are combined with DNA barcodes for species identification,which has expanded the applications of herb identification based on DNA barcoding and brought about the post-DNA-barcoding era.Furthermore,standard and high-species coverage DNA barcode reference libraries have been constructed to provide reference se-quences for species identification,which increases the accuracy and credibility of species discrimination based on DNA barcodes.In summary,DNA barcoding should play a key role in the quality control of traditional herbal medicine and in the international herb trade.

6.
Acta Pharmaceutica Sinica B ; (6): 1755-1770, 2023.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-982818

RESUMO

For wild natural medicine, unanticipated biodiversity as species or varieties with similar morphological characteristics and sympatric distribution may co-exist in a single batch of medical materials, which affects the efficacy and safety of clinical medication. DNA barcoding as an effective species identification tool is limited by its low sample throughput nature. In this study, combining DNA mini-barcode, DNA metabarcoding and species delimitation method, a novel biological sources consistency evaluation strategy was proposed, and high level of interspecific and intraspecific variations were observed and validated among 5376 Amynthas samples from 19 sampling points regarded as "Guang Dilong" and 25 batches of proprietary Chinese medicines. Besides Amynthas aspergillum as the authentic source, 8 other Molecular Operational Taxonomic Units (MOTUs) were elucidated. Significantly, even the subgroups within A. aspergillum revealed here differ significantly on chemical compositions and biological activity. Fortunately, this biodiversity could be controlled when the collection was limited to designated areas, as proved by 2796 "decoction pieces" samples. This batch biological identification method should be introduced as a novel concept regarding natural medicine quality control, and to offer guidelines for in-situ conservation and breeding bases construction of wild natural medicine.

7.
BMC Genomics ; 23(1): 720, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271325

RESUMO

Mantidis Ootheca (Sangpiaoxiao, mantis egg case) is a typical multi-origin Chinese medicinal material. The Chinese Pharmacopoeia stipulates that the Mantidis Ootheca originates from three species of Mantis: Tenodera sinensis, Statilia maculate, and Hierodula patellifera. However, Mantidis Ootheca mainly relies on field collection, which leads to confusion of its actual origin in the market. As the clinical use of Mantidis Ootheca with unknown original mantis species will pose potential risks to drug safety, it is necessary to survey the commercially available Mantidis Ootheca origin species. However, as the egg case of Mantis, the morphological characters of Mantidis Ootheca are limited and usually cannot serve as accurate identification tool. DNA barcoding, which is widely used in taxonomic studies of animals, is severely affected by the impact of storage pests and DNA degradation. Thus, this study collected a total of 4580 Mantidis Ootheca and pooled separately Mantidis Ootheca samples according to 18 different sources as DNA samples to analyze the origin diversity of Mantidis Ootheca individuals contaminated by common store pests collected in in the market using DNA metabarcoding, and to provide a basis for quality control of Mantidis Ootheca. 37 Mantis ASVs and 9 Mantis MOTUs were identified through species delimitation, and the high-level intraspecific diversity was depicted as haplotype network plot. Besides Tenodera sinensis and Hierodula patellifera as genuine original mantis species defined in the Chinese Pharmacopoeia, Tenodera angustipennis was also the origin species of these Mantidis Ootheca samples.


Assuntos
Besouros , Mantódeos , Animais , Código de Barras de DNA Taxonômico , Mantódeos/genética , DNA , Besouros/genética , Controle de Qualidade
8.
Conserv Genet Resour ; 14(4): 351-365, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991367

RESUMO

The modern concept of DNA-based barcoding for cataloguing biodiversity was proposed in 2003 by first adopting an approximately 600 bp fragment of the mitochondrial COI gene to compare via nucleotide alignments with known sequences from specimens previously identified by taxonomists. Other standardized regions meeting barcoding criteria then are also evolving as DNA barcodes for fast, reliable and inexpensive assessment of species composition across all forms of life, including animals, plants, fungi, bacteria and other microorganisms. Consequently, global DNA barcoding campaigns have resulted in the formation of many online workbenches and databases, such as BOLD system, as barcode references, and facilitated the development of mini-barcodes and metabarcoding strategies as important extensions of barcode techniques. Here we intend to give an overview of the characteristics and features of these barcode markers and major reference libraries existing for barcoding the planet's life, as well as to address the limitations and opportunities of DNA barcodes to an increasingly broader community of science and society.

9.
Insects ; 13(6)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35735898

RESUMO

Megaphragma species are important models for basic organismal research, and many are potential biological control agents. We present the first extensive revision of species of the genus Megaphragma based on morphological and molecular data. Our revision includes all previously described species, 6 of which are synonymized, and 22 of which are described here as new. We also provide the first key to all species of the genus and reconstruct their phylogeny based on 28S and CO1 molecular markers. The following species are synonymized with M. longiciliatum Subba Rao: M. aligarhensis Yousuf and Shafee syn. nov.; M. amalphitanum Viggiani syn. nov.; M. decochaetum Lin syn. nov.; M. magniclava Yousuf and Shafee syn. nov.; M. shimalianum Hayat syn. nov.M. anomalifuniculi Yuan and Lou syn. nov. is synonymized with M. polychaetum Lin. The following species are described as new: M. antecessor Polaszek and Fusu sp. nov.; M. breviclavum Polaszek and Fusu sp. nov.; M. chienleei Polaszek and Fusu sp. nov.; M. cockerilli Polaszek and Fusu sp. nov.; M. digitatum Polaszek and Fusu sp. nov.; M. fanenitrakely Polaszek and Fusu sp. nov.; M. funiculatum Fusu, Polaszek, and Viggiani sp. nov.; M. giraulti Viggiani, Fusu, and Polaszek sp. nov.; M. hansoni Polaszek, Fusu, and Viggiani sp. nov.; M. kinuthiae Polaszek, Fusu, and Viggiani sp. nov.; M. liui Polaszek and Fusu sp. nov.; M. momookherjeeae Polaszek and Fusu sp. nov.; M. nowickii Polaszek, Fusu, and Viggiani sp. nov.; M. noyesi Polaszek and Fusu sp. nov.; M. pintoi Viggiani sp. nov.; M. polilovi Polaszek, Fusu, and Viggiani sp. nov.; M. rivelloi Viggiani sp. nov.; M. tamoi Polaszek, Fusu, and Viggiani sp. nov.; M. tridens Fusu, and Polaszek sp. nov.; M. uniclavum Polaszek and Fusu sp. nov.; M. vanlentereni Polaszek and Fusu sp. nov.; M. viggianii Fusu, Polaszek, and Polilov sp. nov.

10.
Front Plant Sci ; 13: 819822, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432422

RESUMO

Radix Paeoniae Rubra (Chishao), a typical multi-origin Chinese medicinal material, originates from the dried roots of Paeonia lactiflora or P. veitchii. The previous study suggested that these two commonly used Chishao showed variation in their chemical compositions and clinical efficacies. Therefore, accurate identification of different Chishao species was of great significance for the guide of clinical medication, and timely treatment of patients. In this study, the chloroplast genome sequences of P. lactiflora and P. veitchii were obtained by next-generation sequencing (NGS) technology, and then the hypervariable regions were selected to design two mini-barcode candidates for species identification. Combined with DNA metabarcoding technology, we performed qualitative and quantitative analysis on the artificially mixed samples of P. lactiflora and P. veitchii and evaluated the identification ability of these mini-barcode candidates. Furtherly, the mini-barcode with good performance was applied to distinguish the Chinese patent medicine "cerebral thrombosis tablets" containing Chishao. The results indicated that the chloroplast genomes of P. lactiflora and P. veitchii were 152,750 and 152,527 bp, respectively. As published previously, they exhibited a typical quadripartite structure including a large single-copy region (LSC), a small single-copy region (SSC) and a pair of inverted repeat regions (IRs). The nucleotide polymorphism analysis revealed seven variable protein-coding regions as petL, psaI, psbJ, rpl16, ycf1b, psaC, and ndhF, and two mini-barcodes were developed from ycf1b and ndhF respectively. The result suggested that both two mini-barcodes performed well distinguishing P. lactiflora from P. veitchii. Besides, P. lactiflora was the only raw material of Chishao in all collected "cerebral thrombosis tablets" samples. In general, this study has established a method to realize the qualitative and quantitative identification of Chishao as multi-origin Chinese medicinal materials, which can be applied to Chinese patent medicines containing Chishao.

11.
Front Nutr ; 9: 837268, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369100

RESUMO

Chinese patent medicines (CPMs) are of great value for the prevention and treatment of diseases. However, adulterants and pesticide residues in CPMs have become the "bottleneck" impeding the globalization of traditional Chinese medicine. In this study, 12 batches of commercially available Qipi pill (a famous CPM recorded in Chinese Pharmacopeia) from different manufacturers were investigated to evaluate their authenticity and quality safety. Considering the severely degraded DNA in CPMs, kompetitive allele specific PCR (KASP) technology combined with DNA mini-barcodes was proposed for the quality regulation of a large number of products in CPM market. The residues of four kinds of pesticides including pentachloronitrobenzene (PCNB), hexachlorocyclohexane (HCH), aldrin, and dichlorodiphenyltrichloroethane (DDT) were quantified using gas chromatography and tandem mass spectrometry (GC-MS/MS). The results indicated that in two of the 12 batches of Qipi pill, the main herbal ingredient Panax ginseng was completely substituted by P. quinquefolius, and one sample was partially adulterated with P. quinquefolius. The PCNB residue was detected in 11 batches of Qipi pill, ranging from 0.11 to 0.46 mg/kg, and the prohibited pesticide HCH was present in four samples. Both adulteration and banned pesticides were found in two CPMs. This study suggests that KASP technology combined with DNA mini-barcodes can be used for the quality supervision of large sample size CPMs with higher efficiency but lower cost. Our findings also provide the insight that pesticide residues in CPMs should be paid more attention in the future.

12.
Ecol Appl ; 32(1): e02469, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34626511

RESUMO

Metabarcoding to determine the species composition and diversity of marine zooplankton communities is a fast-developing field in which the standardization of methods is yet to be fully achieved. The selection of genetic markers and primer choice are particularly important because they substantially influence species detection rates and accuracy. Validation is therefore an important step in the design of metabarcoding protocols. We developed taxon-specific mini-barcode primers for the cytochrome c oxidase subunit I (COI) gene region and used an experimental approach to test species detection rates and primer accuracy of the newly designed primers for prawns, shrimps and crabs and published primers for marine lobsters and fish. Artificially assembled mock communities (with known species ratios) and unsorted coastal tow-net zooplankton samples were sequenced and the detected species were compared with those seeded in mock communities to test detection rates. Taxon-specific primers increased detection rates of target taxa compared with a universal primer set. Primer cocktails (multiple primer sets) significantly increased species detection rates compared with single primer pairs and could detect up to 100% of underrepresented target taxa in mock communities. Taxon-specific primers recovered fewer false-positive or false-negative results than the universal primer. The methods used to design taxon-specific mini-barcodes and the experimental mock community validation protocols shown here can easily be applied to studies on other groups and will allow for a level of standardization among studies undertaken in different ecosystems or geographic locations.


Assuntos
Código de Barras de DNA Taxonômico , Zooplâncton , Animais , Código de Barras de DNA Taxonômico/métodos , Ecossistema , Peixes , Marcadores Genéticos , Zooplâncton/genética
13.
Plants (Basel) ; 10(10)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34685813

RESUMO

Devil's claw is the vernacular name for a genus of medicinal plants that occur in the Kalahari Desert and Namibia Steppes. The genus comprises two distinct species: Harpagophytum procumbens and H. zeyheri. Although the European pharmacopeia considers the species interchangeable, recent studies have demonstrated that H. procumbens and H. zeyheri are chemically distinct and should not be treated as the same species. Further, the sale of H. zeyheri as an herbal supplement is not legal in the United States. Four markers were tested for their ability to distinguish H. procumbens from H. zeyheri: rbcL, matK, nrITS2, and psbA-trnH. Of these, only psbA-trnH was successful. A novel DNA mini-barcode assay that produces a 178-base amplicon in Harpagophytum (specificity = 1.00 [95% confidence interval = 0.80-1.00]; sensitivity = 1.00 [95% confidence interval = 0.75-1.00]) was used to estimate mislabeling frequency in a sample of 23 devil's claw supplements purchased in the United States. PCR amplification failed in 13% of cases. Among the 20 fully-analyzable supplements: H. procumbens was not detected in 75%; 25% contained both H. procumbens and H. zeyheri; none contained only H. procumbens. We recommend this novel mini-barcode region as a standard method of quality control in the manufacture of devil's claw supplements.

14.
Phytochem Anal ; 32(5): 804-810, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33527609

RESUMO

INTRODUCTION: Ayurveda takes advantage of the beneficial properties of medicinal plants. High demands in combination with inadequate availability of botanicals and a lack of knowledge with respect to their precise identification lead to adulterations in herbal products. Identification becomes more difficult in complex herbal formulations. Four different polyherbal formulations have been analyzed for the present paper. The targeted plants have different pharmacological properties for various ailments. OBJECTIVE: We aimed to examine the rbcL gene based plant DNA mini-barcode to identify target and non-target plants in polyherbal formulations by using high-throughput next generation sequencing. METHODS: Degenerate primers of the selected mini-barcode region have been identified from the literature. A blend of 30 authentic medicinal plant species was used to examine the species resolution capacity of the mini-barcode. DNA was isolated from herbal formulations, an amplicon library was prepared, and sequencing was performed on an IonS5 system. Data were analyzed using various bioinformatics tools. RESULTS: Analysis of control pooled samples revealed the optimum resolving power of the DNA mini-barcode. Data analysis of the commercial samples revealed that only one herbal formulation contained all plants and matched with listed contents. In two formulations, only 10 out of 21 and 11 out of 20 plants were detected, respectively. Additionally, several non-listed plants were also detected in these formulations. Two formulations contained >20% reads assigned to non-target plants. Overall, 21.98% of the reads were assigned to non-target plants. CONCLUSION: The present study clearly demonstrated the successful application and potential of meta-barcoding in the quality control of complex herbal matrices. The results strongly suggest that this approach can be used in pharmacovigilance of processed herbal products.


Assuntos
Código de Barras de DNA Taxonômico , Plantas Medicinais , DNA de Plantas/genética , Ayurveda , Plantas Medicinais/genética , Controle de Qualidade
15.
Mol Ecol Resour ; 20(4): 920-935, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32279439

RESUMO

Studies focusing on marine macrophyte metabarcoding from environmental samples are scarce, due to the lack of a universal barcode for these taxa, and to their poor representation in DNA databases. Here, we searched for a short barcode able to identify marine macrophytes from tissue samples; then, we created a DNA reference library which was used to identify macrophytes in eDNA from coastal sediments. Barcoding of seagrasses, mangroves and marine macroalgae (Chlorophyta, Rhodophyta and Phaeophyceae) was tested using 18 primer pairs from six barcoding genes: the plant barcodes rbcL, matK and trnL, plus the genes ITS2, COI and 18S. The 18S gene showed the highest universality among marine macrophytes, amplifying 95%-100% of samples; amplification performance of the other barcodes was limited. Taxonomy was assigned using a phylogeny-based approach to create an 18S DNA reference library. Macrophyte tissue sequences were accurately identified within their phyla (88%), order (76%), genus (71%) and species (23%). Nevertheless, out of 86 macrophytes tested, only 48% and 15% had a reference sequence at genus and at species level, respectively. Identification at these levels can be improved by more inclusive reference libraries. Using the 18S mini-barcode and the reference library, we recovered eDNA from 21 marine macrophytes in sediments, demonstrating the barcode's ability to trace primary producers that contribute to blue carbon. We expect this barcode to also be useful for other ecological questions, such as tracing macro primary producers in marine food webs.


Assuntos
DNA de Plantas/genética , Alga Marinha/genética , Clorófitas/genética , Código de Barras de DNA Taxonômico/métodos , Primers do DNA/genética , Biblioteca Gênica , Sedimentos Geológicos/química , Filogenia , Rodófitas/genética
16.
Zootaxa ; 4728(1): zootaxa.4728.1.5, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-32230586

RESUMO

Sphecapatoclea excisa Villeneuve, 1909, the type species of the Palaearctic genus Sphecapatoclea Villeneuve, 1909, is redescribed based on a female syntype and on material from Makhtesh Ramon National Park, Israel, and its first instar larva is described for the first time. The species is sexually dimorphic, with much darker adult males. The male genital apparatus is unique by its compressed and sclerotised epiphallus. The morphology of the first instar larva is in accordance with the recently suggested position of the genus Sphecapatoclea in the Old World clade of the "lower" Miltogramminae. Two COI mini-barcodes are provided for S. excisa, and molecular data are in agreement with sequences for Sphecapatoclea spp. available in GenBank. Morphology supports a broad concept of the genus, as S. excisa presents a mixture of character states traditionally used to diagnose either Sphecapatoclea (s. str.) or Parthomyia Rohdendorf, 1925. Available morphological keys for genera of Palaearctic Miltogramminae are compared for functionality, and possible autapomorphies from both adult and larval morphology are discussed.


Assuntos
Dípteros , Sarcofagídeos , Animais , Feminino , Larva , Masculino
17.
Front Pharmacol ; 11: 585687, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33390955

RESUMO

Herbal products play an important role globally in the pharmaceutical and healthcare industries. However, some specific groups of herbal products are easily adulterated by confused materials on the market, which seriously reduces the products' quality. Universal conventional DNA barcodes would function poorly since the processed herbal products generally suffer from varying degrees of DNA degradation and DNA mixing during processing or manufacturing. For quality control purposes, an accurate and effective method should be provided for species identification of these herbal products. Here, we provided a strategy of developing the specific mini-barcode using Senna as an example, and by coupling with the metabarcoding technique, it realized the qualitative and quantitative identification of processed herbal products. The plastomes of Senna obtusifolia (L.) H.S.Irwin & Barneby and Senna occidentalis (L.) Link were newly assembled, and the hypervariable coding-regions were identified by comparing their genomes. Then, the specific mini-barcodes were developed based on the identified hypervariable regions. Finally, we applied the DNA metabarcoding technique to the developed mini-barcodes. Results showed that the lengths of plastomes of S. obtusifolia and S. occidentalis were 162,426 and 159,993 bp, respectively. Four hypervariable coding-regions ycf1, rpl23, petL, and matK were identified. Two specific mini-barcodes were successfully developed from matK, and the mini-barcode of primer 647F-847R was proved to be able to qualitatively and quantitatively identify these two processed Senna seeds. Overall, our study established a valuable way to develop the specific mini-barcode, which may provide a new idea for the quality control of processed herbal products.

18.
J Fish Biol ; 95(4): 1046-1060, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31304599

RESUMO

The extraordinary species diversity of the Neotropical freshwater fish fauna is world renown. Yet, despite rich species diversity, taxonomic and genetic resources for its Cerrado ichthyofauna remain poorly developed. We provide a reference library of 149 DNA barcodes for 39 species/lineages of Cerrado headwater stream fishes from the Brazilian Distrito Federal and nearby areas and test the utility of distance-based criteria, tree-based criteria and minibarcodes for specimen identification. Mean Kimura 2-parameter genetic distances within species to orders ranged 1·8-12·1%. However, mean intraspecific v. congeneric-interspecific distances (0·9-1·3%) overlapped extensively and distance-based barcoding failed to achieve correct identifications due to c. 4-12·1% error rates and 19·5% ambiguous identifications related to the presence of singletons. Overlap was reduced and best-match success rates improved drastically to 83·5% when Characidium barcodes representing potential misidentifications or undescribed species were removed. Tree-based monophyly criteria generally performed similarly to distance methods, correctly differentiating up to c. 85% of species/lineages despite neighbour-joining and Bayesian tree errors (random lineage-branching events, long-branch attraction). Five clusters (Ancistrus aguaboensis, Characidium spp., Eigenmannia trilineata, Hasemania hanseni and Hypostomus sp. 2) exhibited deep intraspecific divergences or para-/polyphyly and multiple Barcode Index Number assignments indicative of putative candidate species needing taxonomic re-examination. Sliding-window analyses also indicated that a 200 bp minibarcode region performed just as well at specimen identification as the entire barcode gene. Future DNA barcoding studies of Distrito Federal-Cerrado freshwater fishes will benefit from increased sampling coverage, as well as consideration of minibarcode targets for degraded samples and next-generation sequencing.


Assuntos
Distribuição Animal , Código de Barras de DNA Taxonômico , Peixes/genética , Animais , Teorema de Bayes , Biodiversidade , Brasil , Complexo IV da Cadeia de Transporte de Elétrons/genética , Peixes/fisiologia , Biblioteca Gênica , Filogenia , Rios , Especificidade da Espécie
19.
Artigo em Inglês | MEDLINE | ID: mdl-30865559

RESUMO

Mislabelling in fish products is a highly significant emerging issue in world fish trade in terms of health and economic concerns. DNA barcoding is an efficient sequencing-based tool for detecting fish species substitution but due to DNA degradation, it is in many cases difficult to amplify PCR products of the full-length barcode marker (~650 bp), especially in severely processed products. In the present study, a pair of universal primers targeting a 198 bp sequence of the mitochondrial 16s rRNA gene was designed for identification of fish species in the processed fish products commonly consumed in Malaysia. The specificity of the universal primers was tested by both in-silico studies using bioinformatics software and through cross-reaction assessment by practical PCR experiments against the DNA from 38 fish species and 22 other non-target species (animals and plants) and found to be specific for all the tested fish species. To eliminate the possibility of any false-negative detection, eukaryotic endogenous control was used during specificity evaluation. The developed primer set was validated with various heat-treated (boiled, autoclaved and microwaved) fish samples and was found to show high stability under all processing conditions. The newly developed marker successfully identified 92% of the tested commercial fish products with 96-100% sequence similarities. This study reveals a considerable degree of species mislabelling (20.8%); 5 out of 24 fish products were found to be mislabelled. The new marker developed in this work is a reliable tool to identify fish species even in highly processed products and might be useful in detecting fish species substitution thus protecting consumers' health and economic interests.


Assuntos
Código de Barras de DNA Taxonômico , Produtos Pesqueiros/análise , Peixes/classificação , Peixes/genética , Mitocôndrias/genética , RNA Ribossômico 16S/genética , Animais , Biomarcadores/análise , Malásia
20.
Zootaxa ; 4455(2): 295-321, 2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30314211

RESUMO

Tetillidae is a sponge family distributed all over the world but with some genera apparently endemic from the Antarctic and Subantarctic (the "Antarctic clade"). Species identification results tricky due to the similarities of their morphological characters. However, molecular phylogenies have helped to resolve the family taxonomy. The last phylogenetic study on Tetillidae suggested the creation of two new genera: Levantiniella and Antarctotetilla. Lenvantiniella, from Middle East Mediterranean Sea, was previously classified within Cinachyrella, from which it differs in the small rounded surface cavities, distinctive from true porocalices. Antarctotetilla has up to now an Antarctic distribution, and harbors species wrongly classified within Tethya, Craniella, or Tetilla. The main differences of Antarctotetilla to other Tetillidae genera are the presence of pores grouped in small areas, and a poorly-defined cortex (pseudocortex). This study aims to re-describe in detail the species of Tetillidae that belong in the two above mentioned new genera, and to highlight that molecular phylogenies should be combined with morphological analyses to improve taxonomical decisions. We also describe a new Tetillidae species with a hair-like hispidation, which we name Antarctotetilla pilosa nov. sp. Furthermore, the types of Tethya coactifera and T. crassispicula (Lendenfeld, 1907) were reexamined because of some morphological similarities with Antarctotetilla. The minibarcode sequences (a small COI fragment) placed them within the Antarctic clade harboring Antarctotetilla and Cinachyra, but did not resolve their genus position. A morphological revision, however, suggests placing T. coactifera in Antarctotetilla, while T. crassispicula, which owns porocalices and a spicule-reinforced cortex, appeared to belong in Cinachyra.


Assuntos
Filogenia , Poríferos , Animais , Regiões Antárticas , Mar Mediterrâneo , Oriente Médio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...